NeRF衍生项目,谷歌用Waymo自动驾驶汽车打造3D数字城市,辅助解析落实

前不久,谷歌公布了一系列与AR导航、沉浸式立体地图相关的更新,让我们进一步了解谷歌3D地图的发展路径,包括基于海量街景数据合成3D,以及后续会在街景相机上加入LiDAR模组,来实现3D定位等等。 相比于Niantic、Snap等初创公司,谷歌LBS AR、3D地图领域更具优势,仅背靠谷歌地图、谷歌地球就拥有大量的环境和定位数据,因此扩展3D地图布局将更加顺利。 不仅如此,谷歌已经开始从多方面着手收集3D的环境数据。比如,谷歌母公司Alphabet旗下的自动驾驶汽车项目Waymo,近期就公布了图像合成模型NeRF的衍生版本:Block-NeRF,其特点是可通过自动驾驶汽车的传感器来收集街区的环境数据,并根据这些数据来合成大规模的3D场景。 关于Block-NeRF 据了解,NeRF简单来讲就是神经辐射场,原理是使用MLP神经网络隐式的学习一个静态3D场景,并通过静态图像,去渲染大规模3D场景的任意角度。 与此前谷歌的其他NeRF模型相比,Block-NeRF采用自动驾驶汽车Waymo用传感器收集的路面数据,来生成区域神经辐射场,并组合成3D场景。Block-NeRF不局限于车辆经过的路面场景,也可以3D重建完整的大规模环境。比如,Waymo利用Block-NeRF渲染了旧金山阿拉莫广场街区(约半平方公里),其中包括35个街区NeRF模型。 经过三个月时间,Waymo捕捉280万张图片。一些场景甚至需要超过13小时车程(1330次驾驶)收集的数据。Waymo表示:我们构建了迄今为止最大的神经辐射场,可渲染出旧金山的完整街区。 Block-NeRF的亮点是比NeRF方案渲染的环境规模更大,其规模可跨越城市多个街区,因此有潜力渲染城市规模的3D场景。实际上,Block-NeRF是将多个街区分解为单独的NeRF,并分别训练这些分区NeRF,然后通过进行组合而生成完整场景。

NeRF衍生项目,谷歌用Waymo自动驾驶汽车打造3D数字城市

分区训练NeRF的好处是,可分解渲染时间,可快速扩展至任意大渲染规模,而且每一块NeRF都可以独立更新。 因此,利用Block-NeRF生成的3D场景可任意角度查看,而且可以调整一天任意时间的光影等元素变化。 等等,怎么听上去像这么像是一个三维建模引擎,传统的引擎是基于虚拟场景建模,而Block-NeRF则是基于真实场景来建模,同样是建模,也见证了不同公司的不同视角。 很显然,在面向LBS AR/MR的交互场景下,基于Block-NeRF的潜力无穷大。未来的AR将不局限于Local模式,基于真实世界的虚拟场景锚定将呈现完全不同的体验。 方案特点 随着技术发展,神经辐射场在给定一组相机姿态图像后,可实现照片级保真的3D重建和新视图合成。不过,早期的方案主要针对小规模场景、目标物体为中心进行重建,难以实现城市级的规模化3D重建(重建大场景时容易导致明显的伪影和低视觉保真度)。 uo.jjjssj.com 大规模3D场景重建有多种用途,可用于自动驾驶、航空测量等领域。比如地图映射,为真实场景创建高保真的3D地图,以帮助机器人定位、导航和躲避障碍。此外,大规模场景建模也可用于闭环机器人模拟。 对于自动驾驶系统来讲,可生成任意视图的3D场景可提升导航的稳定性,因为3D场景模型记录了场景中可能出现的变化(比如环境照明条件、相机曝光、天气和时间变化、汽车和行人运动),因此在实际导航时,即使路面信息变化,车辆的轨迹也不容易被改变。 不过,这种动态变化的3D场景无法依赖一次性采集的环境数据,为了体现场景中不同区域的变化,这些区域分别需要独立的数据源。因此,Waymo在NeRF基础上进行扩展,将一个场景分为多个block/区域,并通过外观嵌入和学习姿态细化,以此开发了Block-NeRF模型,来计算动态环境变化。 责任编辑:

免责声明:本文章由“知识和经验”发布如果文章侵权,请联系我们处理,本站仅提供信息存储空间服务如因作品内容、版权和其他问题请于本站联系